p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.280D4, C42.732C23, C4.522- 1+4, D4.Q8⋊1C2, C8⋊2Q8⋊13C2, C8⋊3Q8⋊21C2, C4.30(C4○D8), C4.4D8⋊14C2, (C4×C8).77C22, C4⋊C4.167C23, C4⋊C8.313C22, C4.29(C8⋊C22), (C2×C8).166C23, (C2×C4).426C24, C23.296(C2×D4), (C22×C4).509D4, C4⋊Q8.310C22, C4.Q8.84C22, C2.D8.36C22, (C2×D4).175C23, (C4×D4).113C22, C23.19D4⋊3C2, C42.12C4⋊37C2, C4⋊1D4.171C22, C4⋊D4.198C22, C22⋊C8.195C22, (C2×C42).887C22, C22.686(C22×D4), D4⋊C4.111C22, (C22×C4).1091C23, C42.C2.129C22, C23.37C23⋊20C2, C42⋊C2.163C22, C22.26C24.45C2, C2.74(C23.38C23), C2.45(C2×C4○D8), (C2×C4).553(C2×D4), C2.60(C2×C8⋊C22), SmallGroup(128,1960)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.280D4
G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, ac=ca, dad=a-1, cbc-1=dbd=a2b, dcd=a2b2c3 >
Subgroups: 364 in 185 conjugacy classes, 88 normal (34 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C42, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C4⋊D4, C22⋊Q8, C4.4D4, C42.C2, C4⋊1D4, C4⋊Q8, C2×C4○D4, C42.12C4, D4.Q8, C23.19D4, C4.4D8, C8⋊3Q8, C8⋊2Q8, C22.26C24, C23.37C23, C42.280D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C4○D8, C8⋊C22, C22×D4, 2- 1+4, C23.38C23, C2×C4○D8, C2×C8⋊C22, C42.280D4
(1 61 29 43)(2 62 30 44)(3 63 31 45)(4 64 32 46)(5 57 25 47)(6 58 26 48)(7 59 27 41)(8 60 28 42)(9 22 39 56)(10 23 40 49)(11 24 33 50)(12 17 34 51)(13 18 35 52)(14 19 36 53)(15 20 37 54)(16 21 38 55)
(1 39 5 35)(2 10 6 14)(3 33 7 37)(4 12 8 16)(9 25 13 29)(11 27 15 31)(17 60 21 64)(18 43 22 47)(19 62 23 58)(20 45 24 41)(26 36 30 40)(28 38 32 34)(42 55 46 51)(44 49 48 53)(50 59 54 63)(52 61 56 57)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(2 28)(3 7)(4 26)(6 32)(8 30)(9 39)(10 16)(11 37)(12 14)(13 35)(15 33)(17 53)(19 51)(20 24)(21 49)(23 55)(27 31)(34 36)(38 40)(41 63)(42 44)(43 61)(45 59)(46 48)(47 57)(50 54)(58 64)(60 62)
G:=sub<Sym(64)| (1,61,29,43)(2,62,30,44)(3,63,31,45)(4,64,32,46)(5,57,25,47)(6,58,26,48)(7,59,27,41)(8,60,28,42)(9,22,39,56)(10,23,40,49)(11,24,33,50)(12,17,34,51)(13,18,35,52)(14,19,36,53)(15,20,37,54)(16,21,38,55), (1,39,5,35)(2,10,6,14)(3,33,7,37)(4,12,8,16)(9,25,13,29)(11,27,15,31)(17,60,21,64)(18,43,22,47)(19,62,23,58)(20,45,24,41)(26,36,30,40)(28,38,32,34)(42,55,46,51)(44,49,48,53)(50,59,54,63)(52,61,56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,39)(10,16)(11,37)(12,14)(13,35)(15,33)(17,53)(19,51)(20,24)(21,49)(23,55)(27,31)(34,36)(38,40)(41,63)(42,44)(43,61)(45,59)(46,48)(47,57)(50,54)(58,64)(60,62)>;
G:=Group( (1,61,29,43)(2,62,30,44)(3,63,31,45)(4,64,32,46)(5,57,25,47)(6,58,26,48)(7,59,27,41)(8,60,28,42)(9,22,39,56)(10,23,40,49)(11,24,33,50)(12,17,34,51)(13,18,35,52)(14,19,36,53)(15,20,37,54)(16,21,38,55), (1,39,5,35)(2,10,6,14)(3,33,7,37)(4,12,8,16)(9,25,13,29)(11,27,15,31)(17,60,21,64)(18,43,22,47)(19,62,23,58)(20,45,24,41)(26,36,30,40)(28,38,32,34)(42,55,46,51)(44,49,48,53)(50,59,54,63)(52,61,56,57), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (2,28)(3,7)(4,26)(6,32)(8,30)(9,39)(10,16)(11,37)(12,14)(13,35)(15,33)(17,53)(19,51)(20,24)(21,49)(23,55)(27,31)(34,36)(38,40)(41,63)(42,44)(43,61)(45,59)(46,48)(47,57)(50,54)(58,64)(60,62) );
G=PermutationGroup([[(1,61,29,43),(2,62,30,44),(3,63,31,45),(4,64,32,46),(5,57,25,47),(6,58,26,48),(7,59,27,41),(8,60,28,42),(9,22,39,56),(10,23,40,49),(11,24,33,50),(12,17,34,51),(13,18,35,52),(14,19,36,53),(15,20,37,54),(16,21,38,55)], [(1,39,5,35),(2,10,6,14),(3,33,7,37),(4,12,8,16),(9,25,13,29),(11,27,15,31),(17,60,21,64),(18,43,22,47),(19,62,23,58),(20,45,24,41),(26,36,30,40),(28,38,32,34),(42,55,46,51),(44,49,48,53),(50,59,54,63),(52,61,56,57)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(2,28),(3,7),(4,26),(6,32),(8,30),(9,39),(10,16),(11,37),(12,14),(13,35),(15,33),(17,53),(19,51),(20,24),(21,49),(23,55),(27,31),(34,36),(38,40),(41,63),(42,44),(43,61),(45,59),(46,48),(47,57),(50,54),(58,64),(60,62)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | ··· | 4J | 4K | 4L | ··· | 4Q | 8A | ··· | 8H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | 8 | ··· | 8 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D8 | C8⋊C22 | 2- 1+4 |
kernel | C42.280D4 | C42.12C4 | D4.Q8 | C23.19D4 | C4.4D8 | C8⋊3Q8 | C8⋊2Q8 | C22.26C24 | C23.37C23 | C42 | C22×C4 | C4 | C4 | C4 |
# reps | 1 | 1 | 4 | 4 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.280D4 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 16 | 16 | 2 |
0 | 0 | 1 | 0 | 16 | 1 |
13 | 0 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 1 | 1 | 15 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 16 |
3 | 3 | 0 | 0 | 0 | 0 |
14 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 12 | 0 | 0 |
0 | 0 | 5 | 5 | 0 | 0 |
0 | 0 | 12 | 5 | 0 | 7 |
0 | 0 | 12 | 10 | 5 | 7 |
0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 | 16 | 1 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,1,1,0,0,16,0,16,0,0,0,0,0,16,16,0,0,0,0,2,1],[13,0,0,0,0,0,0,13,0,0,0,0,0,0,0,16,16,16,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,15,0,16],[3,14,0,0,0,0,3,3,0,0,0,0,0,0,5,5,12,12,0,0,12,5,5,10,0,0,0,0,0,5,0,0,0,0,7,7],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,16,0,0,0,0,16,16,0,0,0,0,0,1] >;
C42.280D4 in GAP, Magma, Sage, TeX
C_4^2._{280}D_4
% in TeX
G:=Group("C4^2.280D4");
// GroupNames label
G:=SmallGroup(128,1960);
// by ID
G=gap.SmallGroup(128,1960);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,219,100,675,248,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,a*c=c*a,d*a*d=a^-1,c*b*c^-1=d*b*d=a^2*b,d*c*d=a^2*b^2*c^3>;
// generators/relations